Ramanujan congruences for infinite family of partition functions

Shashika Petta Mestrige
Louisiana State University

April 13, 2019

Integer partitions

Definition

An (integer) partition of n is a non-increasing sequence of positive integers $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{r} \geq 1$ that sum to n. Let $p(n)$ be the number of partitions of n. By convention, we take $p(0)=1$ and $p(n)=0$ for negative n.

For example, if $n=4, p(4)=5$.
(1) 4
(2) $3+1$
(3) $2+2$
(1) $2+1+1$
($1+1+1+1$

Motivation

Consider the first 24 values of the partition function $p(n)$

\mathbf{n}	$\mathbf{P (n)}$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P (n)}$
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

Motivation

Consider the first 24 values of the partition function $p(n)$

\mathbf{n}	$\mathbf{P (n)}$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P (n)}$
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

- Notice that 5 divides $p(n)$ entries in the last row.

Motivation

Consider the first 24 values of the partition function $p(n)$

\mathbf{n}	$\mathbf{P (n)}$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P}(\mathbf{n})$	\mathbf{n}	$\mathbf{P (n)}$
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

- Notice that 5 divides $p(n)$ entries in the last row.
- Also if you look closely, 7 divides $p(5), p(12)$ and $p(19)$.

Motivation

Consider the first 24 values of the partition function $p(n)$

\mathbf{n}	$\mathbf{P}(\mathbf{n})$								
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

- Notice that 5 divides $p(n)$ entries in the last row.
- Also if you look closely, 7 divides $p(5), p(12)$ and $p(19)$.
- 11 divides $p(6)$ and $p(17)$.

Introduction

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+7) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Introduction

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+7) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

notice that $24 \cdot 4 \equiv 1(\bmod 5), 24 \cdot 5 \equiv 1(\bmod 7), 24 \cdot 7 \equiv 1(\bmod 11)$.

Introduction

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+7) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

notice that $24 \cdot 4 \equiv 1(\bmod 5), 24 \cdot 5 \equiv 1(\bmod 7), 24 \cdot 7 \equiv 1(\bmod 11)$.
The generating function for $p(n)$ is given by

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)}=\frac{q^{1 / 24}}{\eta(\tau)}
$$

here $q=e^{2 \pi i \tau}$. This is a weight $-1 / 2$ weakly holomorphic modular form on $\Gamma(24)$.
Here $\quad \eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \quad$ is the Dedekind eta function.

Introduction

Definition

Ramanujan congruences are the congruences of the form

$$
p(\ell n+\beta) \equiv 0 \quad(\bmod \ell) .
$$

Introduction

Definition

Ramanujan congruences are the congruences of the form

$$
p(\ell n+\beta) \equiv 0 \quad(\bmod \ell) .
$$

Theorem (Ahlgren and Boylan, 2000)

No Ramanujan congruences exist for other primes.

Introduction

Definition

Ramanujan congruences are the congruences of the form

$$
p(\ell n+\beta) \equiv 0 \quad(\bmod \ell) .
$$

Theorem (Ahlgren and Boylan, 2000)

No Ramanujan congruences exist for other primes.

Theorem (Ono and Ahlgren, 2001)

If $\ell \geq 5$ is prime, n is a positive integer, and $24 \beta \equiv 1(\bmod 24)$, then there are infinitely many non-nested arithmetic progressions $\{A n+B\} \subset\{\ell n+\beta\}$, such that for every integer n we have

$$
p(A n+B) \equiv 0 \quad(\bmod \ell) .
$$

Introduction

To study a large class of restricted partition functions, we study the partition function $p_{\left[1^{c} \ell^{d}\right]}(n)$. This can be defined using generating functions,

$$
\sum_{n=0}^{\infty} p_{\left[1^{c} \ell^{d}\right]}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{c}\left(1-q^{\ell n}\right)^{d}}
$$

Introduction

To study a large class of restricted partition functions, we study the partition function $p_{\left[1^{c} \ell^{d}\right]}(n)$. This can be defined using generating functions,

$$
\sum_{n=0}^{\infty} p_{\left[1^{c} \ell^{d}\right]}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{c}\left(1-q^{\ell n}\right)^{d}}
$$

Examples

- ℓ-Regular partition function $b_{\ell}(n), \quad c=1, d=-1$. Ex: $b_{3}(4)=4$,

$$
\text { The generating function } \quad \sum_{n=0}^{\infty} b_{\ell}(n) q^{n}=\prod_{m=1}^{\infty} \frac{\left(1-q^{\ell m}\right)}{\left(1-q^{m}\right)} \text {. }
$$

Introduction

To study a large class of restricted partition functions, we study the partition function $p_{\left[1^{c} \ell^{d}\right]}(n)$. This can be defined using generating functions,

$$
\sum_{n=0}^{\infty} p_{\left[1^{c} \ell^{d}\right]}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{c}\left(1-q^{\ell n}\right)^{d}} .
$$

Examples

- ℓ-Regular partition function $b_{\ell}(n), \quad c=1, d=-1$. Ex: $b_{3}(4)=4$,

The generating function $\quad \sum_{n=0}^{\infty} b_{\ell}(n) q^{n}=\prod_{m=1}^{\infty} \frac{\left(1-q^{\ell m}\right)}{\left(1-q^{m}\right)}$.

- ℓ-core partition function $a_{\ell}(n), \quad c=1, d=-\ell$. Ex: $a_{3}(4):=2$

The generating function $\sum_{n=0}^{\infty} a_{\ell}(n) q^{n}=\prod_{m=1}^{\infty} \frac{\left(1-q^{\ell m}\right)^{\ell}}{\left(1-q^{m}\right)}$.

Introduction

Theorem (Liuquan Wang, 2017)

For any positive integer k and for $n>0$,

$$
b_{5}\left(5^{2 k} m+\frac{5^{2 k}-1}{6}\right) \equiv 0 \quad\left(\bmod 5^{k}\right) .
$$

Theorem (Liuquan Wang, 2016)

$$
\begin{gathered}
p_{\left[1^{1} 11^{-11}\right]}\left(11^{k} n+11^{k}-5\right) \equiv 0 \quad\left(\bmod 11^{k}\right) \\
p_{\left[1^{1} 11^{-1}\right]}\left(11^{2 k-1} n+\frac{7 \cdot 11^{2 k-1}-5}{12}\right) \equiv 0 \quad\left(\bmod 11^{k}\right) \\
p_{\left[1^{1} 11^{1}\right]}\left(11^{k} n+\frac{11^{k}+1}{2}\right) \equiv 0 \quad\left(\bmod 11^{k}\right)
\end{gathered}
$$

Introduction

Theorem (Liuquan Wang, 2017)

For any positive integer k and for $n>0$,

$$
b_{5}\left(5^{2 k} m+\frac{5^{2 k}-1}{6}\right) \equiv 0 \quad\left(\bmod 5^{k}\right) .
$$

Theorem (Liuquan Wang, 2016)

$$
\begin{gathered}
p_{\left[1^{1} 11^{-11}\right]}\left(11^{k} n+11^{k}-5\right) \equiv 0 \quad\left(\bmod 11^{k}\right) \\
p_{\left[1^{1} 11^{-1}\right]}\left(11^{2 k-1} n+\frac{7 \cdot 11^{2 k-1}-5}{12}\right) \equiv 0 \quad\left(\bmod 11^{k}\right) \\
p_{\left[1^{1} 11^{1}\right]}\left(11^{k} n+\frac{11^{k}+1}{2}\right) \equiv 0 \quad\left(\bmod 11^{k}\right)
\end{gathered}
$$

Furthermore, Wang stated that it should be possible to obtain congruences for the partition function $p_{\left[1^{c} 11^{d}\right]}(n)$. However Wang proved each case separately,

Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar result for the other primes less than or equal to 13.

Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar result for the other primes less than or equal to 13 .

Theorem

For $\ell \leq 13$ a prime, for any positive integer r and for integers c, d such that $c>0$ and $d \geq-2$,

$$
p_{\left[1^{c} \ell^{\ell}\right]}\left(\ell^{r} m+n_{r}^{\ell}\right) \equiv 0 \quad\left(\bmod \ell^{A_{r}^{\ell}}\right)
$$

where $24 n_{r}^{\ell} \equiv(c+\ell d)\left(\bmod \ell^{r}\right)$. For $\ell=11$ this is true for all integers c, d.
Here A_{r}^{ℓ} depends on the prime ℓ, the integers c, d and can be calculated explicitly.

Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar result for the other primes less than or equal to 13 .

Theorem

For $\ell \leq 13$ a prime, for any positive integer r and for integers c, d such that $c>0$ and $d \geq-2$,

$$
p_{\left[1^{c} \ell^{d}\right]}\left(\ell^{r} m+n_{r}^{\ell}\right) \equiv 0 \quad\left(\bmod \ell^{A_{r}^{\ell}}\right)
$$

where $24 n_{r}^{\ell} \equiv(c+\ell d)\left(\bmod \ell^{r}\right)$. For $\ell=11$ this is true for all integers c, d.
Here A_{r}^{ℓ} depends on the prime ℓ, the integers c, d and can be calculated explicitly.

Here I only talk about the case $\ell=11$ in detail and at the end I will briefly talk about the case $\ell=5$.

Introduction

In 1981, Basil Gordon proved congruences for the partition function $p_{-k}(n)$. The generating function for the partition function $p_{-k}(n)$ is given by,

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{k}}=\sum_{n=0}^{\infty} p_{-k}(n) q^{n} .
$$

Introduction

In 1981, Basil Gordon proved congruences for the partition function $p_{-k}(n)$. The generating function for the partition function $p_{-k}(n)$ is given by,

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{k}}=\sum_{n=0}^{\infty} p_{-k}(n) q^{n} .
$$

Theorem (Gordon 1981)

If $24 n \equiv k\left(\bmod 11^{r}\right)$,

$$
p_{-k}(n) \equiv 0 \quad\left(\bmod 11^{\frac{\alpha r}{2}+\epsilon}\right)
$$

where $\epsilon=\epsilon(k)=O(\log |k|)$, if $k \geq 0, \alpha$ depends on the residue of $k(\bmod 120)$ according to the following table.

Preliminaries

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$\mathbf{0}$	2	1	2	1	1	1	2	2	1	1	2	2	1	2	1	0	0	1	1	0	0	1	1	0
24	1	1	1	1	2	2	1	1	2	2	1	0	0	0	0	1	1	0	0	1	1	1	0	0
48	1	1	2	2	1	1	1	0	1	0	1	0	0	1	1	0	0	1	0	1	0	1	0	0
72	2	1	1	1	2	1	2	1	2	1	2	2	1	1	1	2	1	2	1	2	1	1	1	0
96	0	0	1	0	1	0	1	0	1	1	0	0	0	1	0	1	0	1	0	1	1	0	0	0

Table: 1

Here the entry is $\alpha(24 i+j)$ where row labelled $24 i$ and column labeled j. When $k<0$, the last column must be changed to $2,2,2,0,2$.

Preliminaries

The U_{p} Operator

For a Laurent series $f(\tau)=\sum_{n \geq N} a(n) q^{n}$, we define the U_{p} operator by,

$$
U_{p}(f(\tau))=\sum_{p n \geq N} a(p n) q^{n} .
$$

Preliminaries

The U_{p} Operator

For a Laurent series $f(\tau)=\sum_{n \geq N} a(n) q^{n}$, we define the U_{p} operator by,

$$
U_{p}(f(\tau))=\sum_{p n \geq N} a(p n) q^{n} .
$$

Let $g(\tau)=\sum_{n \geq N} b(n) q^{n}$ be an another Laurent series.

$$
U_{p}(f(\tau) g(p \tau))=g(\tau) U_{p}(f(\tau)) .
$$

Preliminaries

The U_{p} Operator

For a Laurent series $f(\tau)=\sum_{n \geq N} a(n) q^{n}$, we define the U_{p} operator by,

$$
U_{p}(f(\tau))=\sum_{p n \geq N} a(p n) q^{n} .
$$

Let $g(\tau)=\sum_{n \geq N} b(n) q^{n}$ be an another Laurent series.

$$
U_{p}(f(\tau) g(p \tau))=g(\tau) U_{p}(f(\tau)) .
$$

Theorem (Atkin-Lehner)

If $f(\tau)$ is a modular function for $\Gamma_{0}(N)$, if $p^{2} \mid N$, then $U_{p}(f(\tau))$ is a modular function for $\Gamma_{0}(N / p)$.

Preliminaries

Let V be the vector space of modular functions on $\Gamma_{0}(11)$, which are holomorphic everywhere except possible at 0 and ∞.

Preliminaries

Let V be the vector space of modular functions on $\Gamma_{0}(11)$, which are holomorphic everywhere except possible at 0 and ∞.

Atkin constructed a basis for V. Let $\left\{J_{\nu} \mid \nu \in \mathbb{Z}\right\}$ be the slightly modified basis elements by Gordon.

Preliminaries

Let V be the vector space of modular functions on $\Gamma_{0}(11)$, which are holomorphic everywhere except possible at 0 and ∞.

Atkin constructed a basis for V. Let $\left\{J_{\nu} \mid \nu \in \mathbb{Z}\right\}$ be the slightly modified basis elements by Gordon.

Lemma (Gordon,1981)

For all $v \in \mathbb{Z}$
(1) $J_{\nu}(\tau)=J_{\nu-5}(\tau) J_{5}(\tau)$,
(2) $\left\{J_{\nu}(\tau) \mid-\infty<\nu<\infty\right\}$ is a basis for V
($\operatorname{Ord}_{\infty} J_{\nu}(\tau)=\nu$
©

$$
\operatorname{ord}_{0} J_{v}(\tau)= \begin{cases}-\nu & \text { if } \nu \equiv 0 \quad(\bmod 5) \\ -\nu-1 & \text { if } \nu \equiv 1,2 \operatorname{or} 3 \quad(\bmod 5) \\ -\nu-2 & \text { if } \nu \equiv 4 \quad(\bmod 5)\end{cases}
$$

(The Fourier series of $J_{\nu}(\tau)$ has integer coeffients, and is of the form $J_{\nu}(\tau)=q^{\nu}+\ldots$

Preliminaries

V is mapped to itself by the linear transfomation,

$$
T_{\lambda}: f(\tau) \rightarrow U_{11}\left(\phi_{11}(\tau)^{\lambda} f(\tau)\right)
$$

here λ is an integer and $\phi_{11}(\tau)=\frac{\eta(121 \tau)}{\eta(\tau)}$.

Preliminaries

V is mapped to itself by the linear transfomation,

$$
T_{\lambda}: f(\tau) \rightarrow U_{11}\left(\phi_{11}(\tau)^{\lambda} f(\tau)\right)
$$

here λ is an integer and $\phi_{11}(\tau)=\frac{\eta(121 \tau)}{\eta(\tau)}$.
Let $\left(C_{\mu, \nu}^{\lambda}\right)$ be the matrix of the linear transfomation T_{λ} with respect to the basis elements J_{ν}.

$$
U_{11}\left(\phi(\tau)^{\lambda} J_{\mu}(\tau)\right)=\sum_{\nu} C_{\mu, \nu}^{\lambda} J_{\nu}(\tau)
$$

Preliminaries

V is mapped to itself by the linear transfomation,

$$
T_{\lambda}: f(\tau) \rightarrow U_{11}\left(\phi_{11}(\tau)^{\lambda} f(\tau)\right)
$$

here λ is an integer and $\phi_{11}(\tau)=\frac{\eta(121 \tau)}{\eta(\tau)}$.
Let $\left(C_{\mu, \nu}^{\lambda}\right)$ be the matrix of the linear transfomation T_{λ} with respect to the basis elements J_{ν}.

$$
U_{11}\left(\phi(\tau)^{\lambda} J_{\mu}(\tau)\right)=\sum_{\nu} C_{\mu, \nu}^{\lambda} J_{\nu}(\tau)
$$

Gordon obtained these recurrences for the matrix elements,

$$
\begin{gathered}
C_{\mu-5, \nu+5}^{\lambda+12}=C_{\mu, \nu}^{\lambda} \\
C_{\mu, \nu}^{\lambda} \equiv C_{\mu, \nu-5}^{\lambda-11} \quad(\bmod 11) .
\end{gathered}
$$

Preliminaries

Gordon proved an inequality about the 11-adic orders of the matrix elements.

$$
\pi\left(C_{\mu, v}^{\lambda}\right) \geq\left[\frac{11 v-\mu-5 \lambda+\delta}{10}\right]
$$

Preliminaries

Gordon proved an inequality about the 11-adic orders of the matrix elements.

$$
\pi\left(C_{\mu, v}^{\lambda}\right) \geq\left[\frac{11 v-\mu-5 \lambda+\delta}{10}\right]
$$

here $\delta=\delta(\mu, \nu)$ depends on the residues of μ and $\nu(\bmod 5)$ according to table 2 .

	ν					
μ	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{0}$	-1	8	7	6	15	
$\mathbf{1}$	0	9	8	2	11	
$\mathbf{2}$	1	10	4	3	12	
$\mathbf{3}$	2	6	5	4	13	
$\mathbf{4}$	3	7	6	5	9	

Table: 2

Preliminaries

Now by the Lemma, the Fourier series of $T_{\lambda}\left(J_{\mu}\right)$ has all coefficients divisible by 11 if and only if,

$$
C_{\mu, \nu}^{\lambda} \equiv 0 \quad(\bmod 11) \text { for all } \nu
$$

Preliminaries

Now by the Lemma, the Fourier series of $T_{\lambda}\left(J_{\mu}\right)$ has all coefficients divisible by 11 if and only if,

$$
C_{\mu, \nu}^{\lambda} \equiv 0 \quad(\bmod 11) \text { for all } \nu
$$

Now we define;

$$
\theta(\lambda, \mu)= \begin{cases}1 & \text { if all the coefficients of } U_{11}\left(\phi^{\lambda} J_{\mu}\right) \text { divisible by } 11 \\ 0 & \text { otherwise }\end{cases}
$$

Preliminaries

Now by the Lemma, the Fourier series of $T_{\lambda}\left(J_{\mu}\right)$ has all coefficients divisible by 11 if and only if,

$$
C_{\mu, \nu}^{\lambda} \equiv 0 \quad(\bmod 11) \text { for all } \nu
$$

Now we define;

$$
\begin{gathered}
\theta(\lambda, \mu)= \begin{cases}1 & \text { if all the coefficients of } U_{11}\left(\phi^{\lambda} J_{\mu}\right) \text { divisible by } 11 \\
0 & \text { otherwise }\end{cases} \\
\theta(\lambda-11, \mu)=\theta(\lambda+12, \mu-5)=\theta(\lambda, \mu)
\end{gathered}
$$

Preliminaries

Now by the Lemma, the Fourier series of $T_{\lambda}\left(J_{\mu}\right)$ has all coefficients divisible by 11 if and only if,

$$
C_{\mu, \nu}^{\lambda} \equiv 0 \quad(\bmod 11) \text { for all } \nu
$$

Now we define;

$$
\theta(\lambda, \mu)= \begin{cases}1 & \text { if all the coefficients of } U_{11}\left(\phi^{\lambda} J_{\mu}\right) \text { divisible by } 11 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\theta(\lambda-11, \mu)=\theta(\lambda+12, \mu-5)=\theta(\lambda, \mu)
$$

	λ																		
μ	0	1	2	3	4	5	6	7	8	9	10								
0	0	1	0	1	0	1	0	1	1	0	0								
1	1	1	0	1	0	0	0	1	1	0	0								
2	1	1	1	0	0	0	0	1	1	0	0								
3	1	0	1	0	0	0	0	1	1	0	0								
4	1	0	1	0	1	0	1	1	0	0	0								

Table: 3

Key Ideas

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{\left[1^{c} 11^{d}\right]}(n)$.

Key Ideas

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{\left[1^{c} 11^{d}\right]}(n)$.

Let $L_{0}=1$

Key Ideas

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{\left[1^{c} 11^{d}\right]}(n)$.

Let $L_{0}=1$

$$
L_{1}(\tau)=U_{11}\left(\phi(\tau)^{c} \prod_{n=1}^{\infty} \frac{\left(1-q^{11 n}\right)^{d}}{\left(1-q^{11 n}\right)^{d}}\right)
$$

Key Ideas

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{\left[1^{c} 1^{d}\right]}(n)$.

Let $L_{0}=1$

$$
\begin{gathered}
L_{1}(\tau)=U_{11}\left(\phi(\tau)^{c} \prod_{n=1}^{\infty} \frac{\left(1-q^{11 n}\right)^{d}}{\left(1-q^{11 n}\right)^{d}}\right) \\
L_{1}(\tau)=U_{11}\left(q^{5 c} \prod_{n=1}^{\infty} \frac{\left(1-q^{121 n}\right)^{c}\left(1-q^{11 n}\right)^{d}}{\left(1-q^{n}\right)^{c}\left(1-q^{11 n}\right)^{d}}\right)
\end{gathered}
$$

Key Ideas

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{\left[1^{c} 1^{d}\right]}(n)$.

Let $L_{0}=1$

$$
\begin{gathered}
L_{1}(\tau)=U_{11}\left(\phi(\tau)^{c} \prod_{n=1}^{\infty} \frac{\left(1-q^{11 n}\right)^{d}}{\left(1-q^{11 n}\right)^{d}}\right) \\
L_{1}(\tau)=U_{11}\left(q^{5 c} \prod_{n=1}^{\infty} \frac{\left(1-q^{121 n}\right)^{c}\left(1-q^{11 n}\right)^{d}}{\left(1-q^{n}\right)^{c}\left(1-q^{11 n}\right)^{d}}\right) \\
L_{1}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{11 n}\right)^{c}\left(1-q^{n}\right)^{d} \sum_{m \geq \mu_{1}}^{\infty} p_{\left[1^{c} 1^{d}\right]}\left(11 m+n_{1}\right) q^{m}
\end{gathered}
$$

Key Ideas

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{\left[1^{c} 11^{d}\right]}(n)$.

Let $\quad L_{0}=1$

$$
\begin{gathered}
L_{1}(\tau)=U_{11}\left(\phi(\tau)^{c} \prod_{n=1}^{\infty} \frac{\left(1-q^{11 n}\right)^{d}}{\left(1-q^{11 n}\right)^{d}}\right) \\
L_{1}(\tau)=U_{11}\left(q^{5 c} \prod_{n=1}^{\infty} \frac{\left(1-q^{121 n}\right)^{c}\left(1-q^{11 n}\right)^{d}}{\left(1-q^{n}\right)^{c}\left(1-q^{11 n}\right)^{d}}\right) \\
L_{1}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{11 n}\right)^{c}\left(1-q^{n}\right)^{d} \sum_{m \geq \mu_{1}}^{\infty} p_{\left[1^{c} 11^{d}\right]}\left(11 m+n_{1}\right) q^{m} \\
L_{2}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{11 n}\right)^{d}\left(1-q^{n}\right)^{c} \sum_{m \geq \mu_{2}}^{\infty} p_{\left[1^{c} 11^{d}\right]}\left(11^{2} m+n_{2}\right) q^{m}
\end{gathered}
$$

Key Ideas

$$
\text { Define } \quad L_{r}:=U_{11}\left(\phi^{\lambda_{r-1}}(\tau) L_{r-1}\right)
$$

Key Ideas

> Define $\quad L_{r}:=U_{11}\left(\phi^{\lambda_{r-1}}(\tau) L_{r-1}\right)$
> here $\quad \lambda_{r}= \begin{cases}c & \text { if } r \text { is even } \\ d & \text { if } r \text { is odd }\end{cases}$

Key Ideas

$$
\begin{gathered}
\text { Define } L_{r}:=U_{11}\left(\phi^{\lambda_{r-1}}(\tau) L_{r-1}\right) \\
\text { here } \lambda_{r}= \begin{cases}c & \text { if } r \text { is even } \\
d & \text { if } r \text { is odd }\end{cases} \\
L_{2 r}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c}\left(1-q^{11 n}\right)^{d} \sum_{m \geq \mu_{2 r}} p_{\left[1^{c} 11^{d}\right]}\left(11^{2 r} m+n_{2 r}\right) q^{m} \\
L_{2 r-1}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{11 n}\right)^{c}\left(1-q^{n}\right)^{d} \sum_{m \geq \mu_{2 r-1}} p_{\left[1^{c} 11^{d}\right]}\left(11^{2 r-1} m+n_{2 r-1}\right) q^{m}
\end{gathered}
$$

Key Ideas

$$
\begin{gathered}
\text { Define } L_{r}:=U_{11}\left(\phi^{\lambda_{r-1}}(\tau) L_{r-1}\right) \\
\text { here } \lambda_{r}= \begin{cases}c & \text { if } r \text { is even } \\
d & \text { if } r \text { is odd }\end{cases} \\
L_{2 r}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c}\left(1-q^{11 n}\right)^{d} \sum_{m \geq \mu_{2 r}} p_{\left[1^{c} 11^{d}\right]}\left(11^{2 r} m+n_{2 r}\right) q^{m} \\
L_{2 r-1}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{11 n}\right)^{c}\left(1-q^{n}\right)^{d} \sum_{m \geq \mu_{2 r-1}} p_{\left[1^{c} 11^{d}\right]}\left(11^{2 r-1} m+n_{2 r-1}\right) q^{m}
\end{gathered}
$$

Now we define,

$$
A_{r}(c, d)=\sum_{i=0}^{r-1} \theta\left(\lambda_{i}, \mu_{i}\right)
$$

for any positive integer r and integers c, d. We also put $A_{0}=0$.

Key Ideas

$$
\begin{gathered}
\text { Define } L_{r}:=U_{11}\left(\phi^{\lambda_{r-1}}(\tau) L_{r-1}\right) \\
\text { here } \lambda_{r}= \begin{cases}c & \text { if } r \text { is even } \\
d & \text { if } r \text { is odd }\end{cases} \\
L_{2 r}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c}\left(1-q^{11 n}\right)^{d} \sum_{m \geq \mu_{2 r}} p_{\left[1^{c} 11^{d}\right]}\left(11^{2 r} m+n_{2 r}\right) q^{m} \\
L_{2 r-1}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{11 n}\right)^{c}\left(1-q^{n}\right)^{d} \sum_{m \geq \mu_{2 r-1}} p_{\left[1^{c} 11^{d}\right]}\left(11^{2 r-1} m+n_{2 r-1}\right) q^{m}
\end{gathered}
$$

Now we define,

$$
A_{r}(c, d)=\sum_{i=0}^{r-1} \theta\left(\lambda_{i}, \mu_{i}\right)
$$

for any positive integer r and integers c, d. We also put $A_{0}=0$.
We can prove $\pi\left(L_{r}\right) \geq A_{r}$.

Key Ideas

By the recurrence relation between $L_{2 r}$ and $L_{2 r-1}$,

$$
\begin{gathered}
n_{2 r}=-5 d \cdot 11^{2 r-1}+n_{2 r-1} \\
n_{2 r-1}=-5 c \cdot 11^{2 r-2}+n_{2 r-2}
\end{gathered}
$$

Key Ideas

By the recurrence relation between $L_{2 r}$ and $L_{2 r-1}$,

$$
\begin{gathered}
n_{2 r}=-5 d \cdot 11^{2 r-1}+n_{2 r-1} \\
n_{2 r-1}=-5 c \cdot 11^{2 r-2}+n_{2 r-2}
\end{gathered}
$$

since $n_{0}=0$ we have that,

$$
\begin{gathered}
n_{2 r-1}=-c\left(\frac{11^{2 r}-1}{24}\right)-11 d\left(\frac{11^{2 r-2}-1}{24}\right), \\
n_{2 r}=-c\left(\frac{11^{2 r}-1}{24}\right)-11 d\left(\frac{11^{2 r}-1}{24}\right) .
\end{gathered}
$$

Key Ideas

By the recurrence relation between $L_{2 r}$ and $L_{2 r-1}$,

$$
\begin{gathered}
n_{2 r}=-5 d \cdot 11^{2 r-1}+n_{2 r-1} \\
n_{2 r-1}=-5 c \cdot 11^{2 r-2}+n_{2 r-2}
\end{gathered}
$$

since $n_{0}=0$ we have that,

$$
\begin{aligned}
n_{2 r-1} & =-c\left(\frac{11^{2 r}-1}{24}\right)-11 d\left(\frac{11^{2 r-2}-1}{24}\right), \\
n_{2 r} & =-c\left(\frac{11^{2 r}-1}{24}\right)-11 d\left(\frac{11^{2 r}-1}{24}\right) .
\end{aligned}
$$

From this we have that,
$24 n_{2 r-1} \equiv(c+11 d) \bmod 11^{2 r-1}$ and $24 n_{2 r} \equiv(c+11 d) \bmod 11^{2 r}$

Therefore n_{r} are integers such that,

$$
24 n_{r} \equiv(c+11 d) \quad\left(\bmod 11^{r}\right)
$$

Key Ideas

Now let's find μ_{r} explicitly. Notice that μ_{r} is the least positive integer m s.t. $11^{r} m+n_{r} \geq 0$.

Key Ideas

Now let's find μ_{r} explicitly. Notice that μ_{r} is the least positive integer m s.t. $11^{r} m+n_{r} \geq 0$.

Since $11^{2 r-1} m+n_{2 r-1} \geq 0, \quad \mu_{2 r-1}=\left\lceil\frac{11 c+d}{24}-\frac{c+11 d}{24.11^{2 r-1}}\right\rceil$.

$$
\text { Also } 11^{2 r} m+n_{2 r} \geq 0, \quad \mu_{2 r}=\left\lceil\frac{c+11 d}{24}-\frac{c+11 d}{24.11^{2 r}}\right\rceil
$$

Key Ideas

Now let's find μ_{r} explicitly. Notice that μ_{r} is the least positive integer m s.t. $11^{r} m+n_{r} \geq 0$.

Since $11^{2 r-1} m+n_{2 r-1} \geq 0, \quad \mu_{2 r-1}=\left\lceil\frac{11 c+d}{24}-\frac{c+11 d}{24.11^{2 r-1}}\right\rceil$.

$$
\text { Also } 11^{2 r} m+n_{2 r} \geq 0, \quad \mu_{2 r}=\left\lceil\frac{c+11 d}{24}-\frac{c+11 d}{24.11^{2 r}}\right\rceil
$$

Example $(c=1, d=-11)$

In this case, λ_{i} is 1 if i even or is -11 if i is odd.
We also have $n_{r}=11^{r}-5$ and $A_{r}=r$.

$$
p_{\left[1^{1} 11^{-11}\right]}\left(11^{r} m+11^{r}-5\right) \equiv 0 \quad\left(\bmod 11^{r}\right)
$$

Key Ideas

Now let's find μ_{r} explicitly. Notice that μ_{r} is the least positive integer m s.t. $11^{r} m+n_{r} \geq 0$.

Since $11^{2 r-1} m+n_{2 r-1} \geq 0, \quad \mu_{2 r-1}=\left\lceil\frac{11 c+d}{24}-\frac{c+11 d}{24.11^{2 r-1}}\right\rceil$.

$$
\text { Also } 11^{2 r} m+n_{2 r} \geq 0, \quad \mu_{2 r}=\left\lceil\frac{c+11 d}{24}-\frac{c+11 d}{24.11^{2 r}}\right\rceil
$$

Example $(c=1, d=-11)$

In this case, λ_{i} is 1 if i even or is -11 if i is odd.
We also have $n_{r}=11^{r}-5$ and $A_{r}=r$.

$$
p_{\left[1^{1} 11^{-11}\right]}\left(11^{r} m+11^{r}-5\right) \equiv 0 \quad\left(\bmod 11^{r}\right)
$$

Example $(c=2, d=7)$

$$
p_{\left[1^{2} 11^{7}\right]}\left(11^{2 r} m-\frac{7 \cdot 11^{2 r}-79}{24}\right) \equiv 0 \quad\left(\bmod 11^{2 r-1}\right) .
$$

Congruences for $\ell=5$

In this case we define $\quad \theta(b)= \begin{cases}1 & \text { if } b \equiv 1 \text { or } 2 \quad(\bmod 5), \\ 0 & \text { Otherwise. }\end{cases}$
We also define, for $r \geq 1$,
$A_{2 r-1}=\theta(c)+\sum_{i=1}^{r-1}\left\{\theta\left(6 k_{i}+6+d\right)+\theta\left(6 I_{i}+6+c\right)\right\}, \quad A_{2 r}=A_{2 r-1}+\theta\left(6 k_{i}+6+d\right)$,
where $k_{1}=[(c-1) / 5], l_{i}=\left[\left(d+k_{i}\right) / 5\right] \quad$ and $\quad k_{i+1}=\left[\left(c+l_{i}\right) / 5\right]$.

Congruences for $\ell=5$

In this case we define $\quad \theta(b)= \begin{cases}1 & \text { if } b \equiv 1 \text { or } 2 \quad(\bmod 5), \\ 0 & \text { Otherwise. }\end{cases}$
We also define, for $r \geq 1$,

$$
A_{2 r-1}=\theta(c)+\sum_{i=1}^{r-1}\left\{\theta\left(6 k_{i}+6+d\right)+\theta\left(6 l_{i}+6+c\right)\right\}, \quad A_{2 r}=A_{2 r-1}+\theta\left(6 k_{i}+6+d\right),
$$

$$
\text { where } k_{1}=[(c-1) / 5], l_{i}=\left[\left(d+k_{i}\right) / 5\right] \quad \text { and } \quad k_{i+1}=\left[\left(c+l_{i}\right) / 5\right] .
$$

$$
n_{2 r}=-(c+5 d)\left(\frac{5^{2 r}-1}{24}\right), \quad n_{2 r-1}=-c\left(\frac{5^{2 r}-1}{24}\right)-5 d\left(\frac{5^{2 r-2}-1}{24}\right) .
$$

Congruences for $\ell=5$

In this case we define $\quad \theta(b)= \begin{cases}1 & \text { if } b \equiv 1 \text { or } 2 \quad(\bmod 5), \\ 0 & \text { Otherwise. }\end{cases}$
We also define, for $r \geq 1$,
$A_{2 r-1}=\theta(c)+\sum_{i=1}^{r-1}\left\{\theta\left(6 k_{i}+6+d\right)+\theta\left(6 I_{i}+6+c\right)\right\}, \quad A_{2 r}=A_{2 r-1}+\theta\left(6 k_{i}+6+d\right)$,
where $k_{1}=[(c-1) / 5], l_{i}=\left[\left(d+k_{i}\right) / 5\right]$ and $k_{i+1}=\left[\left(c+l_{i}\right) / 5\right]$.

$$
n_{2 r}=-(c+5 d)\left(\frac{5^{2 r}-1}{24}\right), \quad n_{2 r-1}=-c\left(\frac{5^{2 r}-1}{24}\right)-5 d\left(\frac{5^{2 r-2}-1}{24}\right) .
$$

Example

For 5-regular partitions $\quad b_{5}\left(5^{2 r} m+\frac{5^{2 r}-1}{6}\right) \equiv 0 \quad\left(\bmod 5^{r}\right)$ For 5-core partitions $\quad a_{5}\left(5^{r} m-1\right) \equiv 0 \quad\left(\bmod 5^{r}\right)$

Questions/Future Work

There are two ways to prove the congruences for $p_{\left[1^{c} \ell^{d}\right]}(n)$ for the other primes,

- Construct bases for modular functions on $\Gamma_{0}(\ell)$ and use the Gordon's method to prove the congruences.
- Use modular forms modulo ℓ theory.

Theorem (Folsom, Kent, Ono, 2012)

Let $L_{0}:=1 \quad$ and $\quad L_{r}:=U_{\ell}\left(\phi_{\ell}^{\lambda_{r-1}}(\tau) L_{r-1}\right)$
here $\quad \phi_{\ell}(\tau):=\frac{\eta\left(\ell^{2} \tau\right)}{\eta(\tau)} \quad$ and $\quad \lambda_{r}= \begin{cases}1 & \text { if } r \text { is even, } \\ 0 & \text { if } r \text { is odd. }\end{cases}$
If $m \geq 1,5 \leq \ell \leq 31$ and $r \geq m^{2}$, then L_{r} belongs to a $\mathbb{Z} / \ell^{m} \mathbb{Z}$-module with rank $\leq\left\lfloor\frac{\ell-1}{12}\right\rfloor$.

THANK YOU!

