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Integer partitions

Definition

An (integer) partition of n is a non-increasing sequence of positive integers
�1 � �2 · · · � �r � 1 that sum to n. Let p(n) be the number of partitions of n.
By convention, we take p(0) = 1 and p(n) = 0 for negative n.

For example, if n = 4, p(4) = 5.
1 4
2 3+1
3 2+2
4 2+1+1
5 1+1+1+1
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Motivation

Consider the first 24 values of the partition function p(n)

n P(n) n P(n) n P(n) n P(n) n P(n)
0 1 5 7 10 42 15 176 20 627
1 1 6 11 11 56 16 231 21 792
2 2 7 15 12 77 17 297 22 1002
3 3 8 22 13 101 18 385 23 1255
4 5 9 30 14 135 19 490 24 1575

Notice that 5 divides p(n) entries in the last row.

Also if you look closely, 7 divides p(5), p(12) and p(19).

11 divides p(6) and p(17).
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Introduction

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

p(5n + 4) ⌘ 0 (mod 5),

p(7n + 5) ⌘ 0 (mod 7),

p(11n + 7) ⌘ 0 (mod 11).

notice that 24 · 4 ⌘ 1 (mod 5), 24 · 5 ⌘ 1 (mod 7), 24 · 7 ⌘ 1 (mod 11).

The generating function for p(n) is given by
1X

n=0

p(n)qn =
1Y

n=1

1

(1� qn)
=

q
1/24

⌘(⌧)

here q = e
2⇡i⌧ . This is a weight �1/2 weakly holomorphic modular form on �(24).

Here ⌘(⌧) = q
1/24

1Y

n=1

(1� q
n) is the Dedekind eta function.
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Introduction

Definition

Ramanujan congruences are the congruences of the form

p(`n + �) ⌘ 0 (mod `).

Theorem (Ahlgren and Boylan, 2000)

No Ramanujan congruences exist for other primes.

Theorem (Ono and Ahlgren, 2001)

If ` � 5 is prime, n is a positive integer, and 24� ⌘ 1 (mod 24), then there are

infinitely many non-nested arithmetic progressions {An + B} ⇢ {`n + �}, such
that for every integer n we have

p(An + B) ⌘ 0 (mod `).
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Introduction

To study a large class of restricted partition functions, we study the partition
function p[1c`d ](n). This can be defined using generating functions,

1X

n=0

p[1c`d ](n)q
n =

1Y

n=1

1

(1� qn)c(1� q`n)d
.

Examples

`-Regular partition function b`(n), c = 1, d = �1. Ex: b3(4) = 4,

The generating function
1X

n=0

b`(n)q
n =

1Y

m=1

(1� q
`m)

(1� qm)
.

`-core partition function a`(n), c = 1, d = �`. Ex: a3(4) := 2

The generating function
1X

n=0

a`(n)q
n =

1Y

m=1

(1� q
`m)`

(1� qm)
.
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Introduction

Theorem (Liuquan Wang, 2017)

For any positive integer k and for n > 0,

b5

✓
52km +

52k � 1

6

◆
⌘ 0 (mod 5k).

Theorem (Liuquan Wang, 2016)

p[1111�11](11
k
n + 11k � 5) ⌘ 0 (mod 11k)

.

p[1111�1]

✓
112k�1

n +
7 · 112k�1 � 5

12

◆
⌘ 0 (mod 11k)

p[11111]

✓
11kn +

11k + 1

2

◆
⌘ 0 (mod 11k)

Furthermore, Wang stated that it should be possible to obtain congruences for the
partition function p[1c11d ](n). However Wang proved each case separately.
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Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar
result for the other primes less than or equal to 13.

Theorem

For `  13 a prime, for any positive integer r and for integers c , d such that

c > 0 and d � �2,
p[1c`d ](`

r
m + n

`
r ) ⌘ 0 (mod `A

`
r )

where 24n`r ⌘ (c + `d) (mod `r ). For ` = 11 this is true for all integers c , d .

Here A`
r depends on the prime `, the integers c , d and can be calculated explicitly.

Here I only talk about the case ` = 11 in detail and at the end I will briefly
talk about the case ` = 5.
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Introduction

In 1981, Basil Gordon proved congruences for the partition function p�k(n). The

generating function for the partition function p�k(n) is given by,

1Y

n=1

1

(1� qn)k
=

1X

n=0

p�k(n)q
n.

Theorem (Gordon 1981)

If 24n ⌘ k (mod 11r ),

p�k(n) ⌘ 0 (mod 11
↵r
2 +✏)

where ✏ = ✏(k) = O
�
log |k |

�
, if k � 0,↵ depends on the residue of k (mod 120)

according to the following table.
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Preliminaries

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 2 1 2 1 1 1 2 2 1 1 2 2 1 2 1 0 0 1 1 0 0 1 1 0
24 1 1 1 1 2 2 1 1 2 2 1 0 0 0 0 1 1 0 0 1 1 1 0 0
48 1 1 2 2 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0
72 2 1 1 1 2 1 2 1 2 1 2 2 1 1 1 2 1 2 1 2 1 1 1 0
96 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0

Table: 1

Here the entry is ↵(24i + j) where row labelled 24i and column labeled j . When
k < 0, the last column must be changed to 2, 2, 2, 0, 2.
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Preliminaries

The Up Operator

For a Laurent series f (⌧) =
P

n�N a(n)qn, we define the Up operator by,

Up (f (⌧)) =
X

pn�N

a(pn)qn.

Let g(⌧) =
P

n�N b(n)qn be an another Laurent series.

Up (f (⌧)g(p⌧)) = g(⌧)Up (f (⌧)) .

Theorem (Atkin-Lehner)

If f (⌧) is a modular function for �0(N), if p2|N, then Up

⇣
f (⌧)

⌘
is a modular

function for �0(N/p).
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Preliminaries

Let V be the vector space of modular functions on �0(11), which are holomorphic
everywhere except possible at 0 and 1.

Atkin constructed a basis for V . Let {J⌫ |⌫ 2 Z} be the slightly modified basis
elements by Gordon.

Lemma (Gordon,1981)

For all v 2 Z
1 J⌫(⌧) = J⌫�5(⌧)J5(⌧),
2 {J⌫(⌧)|�1 < ⌫ < 1} is a basis for V

3 Ord1J⌫(⌧) = ⌫
4

ord0Jv (⌧) =

8
<

:

�⌫ if ⌫ ⌘ 0 (mod 5)
�⌫ � 1 if ⌫ ⌘ 1, 2 or 3 (mod 5)
�⌫ � 2 if ⌫ ⌘ 4 (mod 5)

5 The Fourier series of J⌫(⌧) has integer coe�ents, and is of the form

J⌫(⌧) = q
⌫ + . . .
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Preliminaries

V is mapped to itself by the linear transfomation,

T� : f (⌧) ! U11

�
�11(⌧)

�
f (⌧)

�

here � is an integer and �11(⌧) =
⌘(121⌧)
⌘(⌧) .

Let (C�
µ,⌫) be the matrix of the linear transfomation T� with respect to the basis

elements J⌫ .

U11

�
�(⌧)�Jµ(⌧)

�
=
X

⌫

C
�
µ,⌫J⌫(⌧)

Gordon obtained these recurrences for the matrix elements,

C
�+12
µ�5,⌫+5 = C

�
µ,⌫

C
�
µ,⌫ ⌘ C

��11
µ,⌫�5 (mod 11).
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Preliminaries

Gordon proved an inequality about the 11-adic orders of the matrix elements.

⇡(C�
µ,v ) �


11v � µ� 5�+ �

10

�

here � = �(µ, ⌫) depends on the residues of µ and ⌫ (mod 5) according to table 2.

⌫
µ 0 1 2 3 4
0 -1 8 7 6 15
1 0 9 8 2 11
2 1 10 4 3 12
3 2 6 5 4 13
4 3 7 6 5 9

Table: 2
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Key Ideas

Our first goal is to construct sequence of modular functions that are the
generating functions for the partitions p[1c11d ](n).

Let L0 = 1

L1(⌧) = U11

 
�(⌧)c

1Y

n=1

(1� q
11n)d

(1� q11n)d

!

L1(⌧) = U11

 
q
5c

1Y

n=1

(1� q
121n)c(1� q

11n)d

(1� qn)c(1� q11n)d

!

L1(⌧) =
1Y

n=1

(1� q
11n)c(1� q

n)d
1X

m�µ1

p[1c11d ](11m + n1)q
m

L2(⌧) =
1Y

n=1

(1� q
11n)d(1� q

n)c
1X

m�µ2

p[1c11d ](11
2
m + n2)q

m
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Key Ideas

Define Lr := U11(�
�r�1(⌧)Lr�1)

here �r =

⇢
c if r is even
d if r is odd

L2r (⌧) =
1Y

n=1

(1� q
n)c(1� q

11n)d
X

m�µ2r

p[1c11d ](11
2r
m + n2r )q

m

L2r�1(⌧) =
1Y

n=1

(1� q
11n)c(1� q

n)d
X

m�µ2r�1

p[1c11d ](11
2r�1

m + n2r�1)q
m

Now we define,

Ar (c , d) =
r�1X

i=0

✓(�i , µi )

for any positive integer r and integers c , d . We also put A0 = 0.

We can prove ⇡(Lr ) � Ar .
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Key Ideas

By the recurrence relation between L2r and L2r�1,

n2r = �5d · 112r�1 + n2r�1

n2r�1 = �5c · 112r�2 + n2r�2

since n0 = 0 we have that,

n2r�1 = �c

✓
112r � 1

24

◆
� 11d

✓
112r�2 � 1

24

◆
,

n2r = �c

✓
112r � 1

24

◆
� 11d

✓
112r � 1

24

◆
.

From this we have that,

24n2r�1 ⌘ (c + 11d) mod 112r�1 and 24n2r ⌘ (c + 11d) mod 112r

Therefore nr are integers such that,

24nr ⌘ (c + 11d) (mod 11r ).
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Key Ideas

Now let’s find µr explicitly. Notice that µr is the least positive integer m s.t.
11rm + nr � 0.

Since 112r�1
m + n2r�1 � 0, µ2r�1 =

l11c + d

24
� c + 11d

24.112r�1

m
.

Also 112rm + n2r � 0, µ2r =
l
c + 11d

24
� c + 11d

24.112r

m
.

Example (c = 1, d = �11)

In this case, �i is 1 if i even or is -11 if i is odd.
We also have nr = 11r � 5 and Ar = r .

p[1111�11] (11
r
m + 11r � 5) ⌘ 0 (mod 11r )

Example (c = 2, d = 7)

p[12117]

✓
112rm � 7 · 112r � 79

24

◆
⌘ 0 (mod 112r�1).
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Congruences for ` = 5

In this case we define ✓(b) =

⇢
1 if b ⌘ 1 or 2 (mod 5) ,
0 Otherwise.

We also define, for r � 1,

A2r�1 = ✓(c)+
r�1X

i=1

{✓(6ki +6+d)+✓(6li +6+c)}, A2r = A2r�1+✓(6ki +6+d),

where k1 = [(c � 1)/5], li = [(d + ki )/5] and ki+1 = [(c + li )/5].

n2r = �(c + 5d)

✓
52r � 1

24

◆
, n2r�1 = �c

✓
52r � 1

24

◆
� 5d

✓
52r�2 � 1

24

◆
.

Example

For 5-regular partitions b5

✓
52rm +

52r � 1

6

◆
⌘ 0 (mod 5r )

For 5-core partitions a5 (5
r
m � 1) ⌘ 0 (mod 5r )
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Questions/Future Work

There are two ways to prove the congruences for p[1c`d ](n) for the other primes,

Construct bases for modular functions on �0(`) and use the Gordon’s method
to prove the congruences.

Use modular forms modulo ` theory.

Theorem (Folsom, Kent, Ono, 2012)

Let L0 := 1 and Lr := U`

⇣
��r�1

` (⌧)Lr�1

⌘

here �`(⌧) :=
⌘(`2⌧)

⌘(⌧)
and �r =

⇢
1 if r is even ,
0 if r is odd.

If m � 1, 5  `  31 and r � m
2
, then Lr belongs to a Z/`mZ-module with rank


⌅
`�1
12

⇧
.
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THANK YOU!
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