Ramanujan congruences for infinite family of partition functions

Shashika Petta Mestrige

Louisiana State University

April 13, 2019

Shashika Petta Mest	rige (Louisiana	State University	Ramanuian	congruences for	r infinite fami	v of partition
0						, or particular

April 13, 2019 1 / 22

Sac

Integer partitions

Definition

An (integer) partition of *n* is a non-increasing sequence of positive integers $\lambda_1 \ge \lambda_2 \cdots \ge \lambda_r \ge 1$ that sum to *n*. Let p(n) be the number of partitions of *n*. By convention, we take p(0) = 1 and p(n) = 0 for negative *n*.

For example, if n = 4, p(4) = 5.

- **1**
- 2 3+1
- 3 2+2

Shashika Petta Mestrige

- 2+1+1
- **5** 1+1+1+1

 < □ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Consider the first 24 values of the partition function p(n)

n	P(n)	n	P(n)	n	P(n)	n	P(n)	n	P(n)
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

< □ ▶

∢∄⊁ ∢≣⊁

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 3 / 22

æ

∃ →

Consider the first 24 values of the partition function p(n)

n	P(n)	n	P(n)	n	P(n)	n	P(n)	n	P(n)
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

• Notice that 5 **divides** p(n) entries in the last row.

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 3 / 22

P

Shashika Petta Mestrige

Consider the first 24 values of the partition function p(n)

n	P(n)	n	P(n)	n	P(n)	n	P(n)	n	P(n)
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

April 13, 2019

3 / 22

- Notice that 5 divides p(n) entries in the last row.
- Also if you look closely, 7 divides p(5), p(12) and p(19).

(Louisiana State University) Ramanujan congruences for infinite family of partition

Shashika Petta Mestrige

Consider the first 24 values of the partition function p(n)

n	P(n)	n	P(n)	n	P(n)	n	P(n)	n	P(n)
0	1	5	7	10	42	15	176	20	627
1	1	6	11	11	56	16	231	21	792
2	2	7	15	12	77	17	297	22	1002
3	3	8	22	13	101	18	385	23	1255
4	5	9	30	14	135	19	490	24	1575

April 13, 2019

3 / 22

- Notice that 5 divides p(n) entries in the last row.
- Also if you look closely, 7 divides p(5), p(12) and p(19).

(Louisiana State University) Ramanujan congruences for infinite family of partition

• 11 divides *p*(6) and *p*(17).

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

 $p(5n+4) \equiv 0 \pmod{5},$ $p(7n+5) \equiv 0 \pmod{7},$ $p(11n+7) \equiv 0 \pmod{11}.$

) 4 (
hashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of p	artition		April 13, 2	2019	4 / 22	
						2

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

 $p(5n+4) \equiv 0 \pmod{5},$

 $p(7n+5) \equiv 0 \pmod{7},$

$$p(11n+7)\equiv 0\pmod{11}.$$

notice that $24 \cdot 4 \equiv 1 \pmod{5}$, $24 \cdot 5 \equiv 1 \pmod{7}$, $24 \cdot 7 \equiv 1 \pmod{11}$.

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 4 / 22

Sac

Theorem (Ramanujan 1920s, Watson 1930s, Atkin 1960s)

For all positive integers n, we have,

$$p(5n+4) \equiv 0 \pmod{5},$$

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+7) \equiv 0 \pmod{11}.$$

notice that $24 \cdot 4 \equiv 1 \pmod{5}$, $24 \cdot 5 \equiv 1 \pmod{7}$, $24 \cdot 7 \equiv 1 \pmod{11}$.

The **generating function** for p(n) is given by

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)} = \frac{q^{1/24}}{\eta(\tau)}$$

here $q = e^{2\pi i \tau}$. This is a weight -1/2 weakly holomorphic modular form on $\Gamma(24)$.

Here
$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$$
 is the Dedekind eta function.

April 13, 2019

4

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

Definition

Ramanujan congruences are the congruences of the form

 $p(\ell n + \beta) \equiv 0 \pmod{\ell}.$

	< □		<₽ > <	₽×	< ≣ >	=	うへ	Ċ
Shashika Petta Mestrige	Louisiana State University) Ramanujan congruences for infinite family of partition	1			April 13	3, 2019	5 / 2	22

Definition

Shas

Ramanujan congruences are the congruences of the form

 $p(\ell n + \beta) \equiv 0 \pmod{\ell}.$

Theorem (Ahlgren and Boylan, 2000)

No Ramanujan congruences exist for other primes.

nika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition April 13, 2019 5 / 22		< 문 ► 문	4) Q (4
	nika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	April 13, 2019	5 / 22

Definition

Ramanujan congruences are the congruences of the form

$$p(\ell n + \beta) \equiv 0 \pmod{\ell}.$$

Theorem (Ahlgren and Boylan, 2000)

No Ramanujan congruences exist for other primes.

Theorem (Ono and Ahlgren, 2001)

If $\ell \ge 5$ is prime, n is a positive integer, and $24\beta \equiv 1 \pmod{24}$, then there are infinitely many non-nested arithmetic progressions $\{An + B\} \subset \{\ell n + \beta\}$, such that for every integer n we have

$$p(An+B)\equiv 0 \pmod{\ell}.$$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 5 / 22

To study a large class of restricted partition functions, we study the partition function $p_{[1^c \ell^d]}(n)$. This can be defined using generating functions,

$$\sum_{n=0}^{\infty} p_{[1^c \ell^d]}(n) q^n = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^c (1-q^{\ell n})^d}.$$

 Image: Shashika Petta Mestrige (Louisiana State University)
 Ramanujan congruences for infinite family of partition
 April 13, 2019
 6 / 22

To study a large class of restricted partition functions, we study the partition function $p_{[1^c \ell^d]}(n)$. This can be defined using generating functions,

$$\sum_{n=0}^{\infty} p_{[1^c \ell^d]}(n) q^n = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^c (1-q^{\ell n})^d}.$$

Examples

Shashika Petta Mestrige

• ℓ -Regular partition function $b_\ell(n)$, c = 1, d = -1. Ex: $b_3(4) = 4$,

The generating function

$$\sum_{n=0}^\infty b_\ell(n)q^n = \prod_{m=1}^\infty rac{(1-q^{\ell m})}{(1-q^m)}.$$

(Louisiana State University) Ramanuian congruences for infinite family of par	rtition		April 13.	2019	6 / 22	ļ
				-	*) Q (*	~

To study a large class of restricted partition functions, we study the partition function $p_{[1^c \ell^d]}(n)$. This can be defined using generating functions,

$$\sum_{n=0}^{\infty} p_{[1^c \ell^d]}(n) q^n = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^c (1-q^{\ell n})^d}$$

Examples

Shashika Petta Mestrige

• ℓ -Regular partition function $b_\ell(n)$, c = 1, d = -1. Ex: $b_3(4) = 4$,

$$\sum_{n=0}^\infty b_\ell(n)q^n = \prod_{m=1}^\infty rac{(1-q^{\ell m})}{(1-q^m)}.$$

< 47 ▶

∢ ≣ ▶

5990

6 / 22

3

April 13, 2019

• ℓ -core partition function $a_\ell(n)$, $c = 1, d = -\ell$. Ex: $a_3(4) := 2$

(Louisiana State University) Ramanujan congruences for infinite family of partition

The generating function
$$\sum_{n=0}^{\infty}a_\ell(n)q^n=\prod_{m=1}^{\infty}rac{(1-q^{\ell m})^\ell}{(1-q^m)}.$$

Theorem (Liuquan Wang, 2017)

For any positive integer k and for n > 0,

$$b_5\left(5^{2k}m+\frac{5^{2k}-1}{6}\right)\equiv 0\pmod{5^k}.$$

Theorem (Liuquan Wang, 2016)

$$p_{[1^111^{-11}]}(11^k n + 11^k - 5) \equiv 0 \pmod{11^k}$$

$$p_{[1^{1}11^{-1}]}\left(11^{2k-1}n + \frac{7 \cdot 11^{2k-1} - 5}{12}\right) \equiv 0 \pmod{11^{k}}$$
$$p_{[1^{1}11^{1}]}\left(11^{k}n + \frac{11^{k} + 1}{2}\right) \equiv 0 \pmod{11^{k}}$$

< □ >	◆ ₫ ▶ ◆ ≣ ▶	<.⊒>	D Q (?)
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition		April 13, 2019	7 / 22

Theorem (Liuquan Wang, 2017)

For any positive integer k and for n > 0,

$$b_5\left(5^{2k}m+\frac{5^{2k}-1}{6}\right)\equiv 0\pmod{5^k}.$$

Theorem (Liuquan Wang, 2016)

$$p_{[1^111^{-11}]}(11^k n + 11^k - 5) \equiv 0 \pmod{11^k}$$

$$p_{[1^{1}11^{-1}]}\left(11^{2k-1}n + \frac{7 \cdot 11^{2k-1} - 5}{12}\right) \equiv 0 \pmod{11^{k}}$$
$$p_{[1^{1}11^{1}]}\left(11^{k}n + \frac{11^{k} + 1}{2}\right) \equiv 0 \pmod{11^{k}}$$

Furthermore, Wang stated that it should be possible to obtain congruences for the partition function $p_{[1^c11^d]}(n)$. However Wang proved each case separately.

April 13, 2019

7 / 22

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar result for the other primes less than or equal to 13.

 Image: Shashika Petta Mestrige (Louisiana State University)
 Ramanujan congruences for infinite family of partition
 April 13, 2019
 8 / 22

Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar result for the other primes less than or equal to 13.

Theorem

Shashika Petta Mestrige

For $\ell \leq 13$ a prime, for any positive integer r and for integers c, d such that c > 0 and $d \geq -2$,

$$p_{[1^c\ell^d]}(\ell^r m + n_r^\ell) \equiv 0 \pmod{\ell^{A_r^\epsilon}}$$

where $24n_r^{\ell} \equiv (c + \ell d) \pmod{\ell^r}$. For $\ell = 11$ this is true for all integers c, d.

(Louisiana State University) Ramanujan congruences for i

Here A_r^ℓ depends on the prime ℓ , the integers c, d and can be calculated explicitly.

< □	▶ ▲ 🗗 ▶ 🔺 🖹 ▶	< ≣ ► _ Ē	$\mathcal{O}\mathcal{Q}$
nfinite family of partition		April 13, 2019	8 / 22

Main Result

Our goal was to derive a proof that works for all the cases and obtain a similar result for the other primes less than or equal to 13.

Theorem

For $\ell \leq 13$ a prime, for any positive integer r and for integers c, d such that c > 0 and $d \geq -2$,

$$p_{[1^c\ell^d]}(\ell^r m + n_r^\ell) \equiv 0 \pmod{\ell^{A_r^\epsilon}}$$

where $24n_r^{\ell} \equiv (c + \ell d) \pmod{\ell^r}$. For $\ell = 11$ this is true for all integers c, d.

Here A_r^{ℓ} depends on the prime ℓ , the integers c, d and can be calculated explicitly.

Here I only talk about the case $\ell = 11$ in detail and at the end I will briefly talk about the case $\ell = 5$.

		₽ ► ◀ ≣ ►	< ≣ > _ 3		996
hashika Petta Mestrige	(Louisiana State University) Ramanujan congruences for infinite family of partition		April 13, 201	9	8 / 22

In 1981, Basil Gordon proved congruences for the partition function $p_{-k}(n)$. The generating function for the partition function $p_{-k}(n)$ is given by,

$$\prod_{n=1}^{\infty}\frac{1}{(1-q^n)^k}=\sum_{n=0}^{\infty}p_{-k}(n)q^n.$$

	< Ē ▶ Ē	9 Q (?
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	April 13, 2019	9 / 22

In 1981, Basil Gordon proved congruences for the partition function $p_{-k}(n)$. The generating function for the partition function $p_{-k}(n)$ is given by,

$$\prod_{n=1}^{\infty} \frac{1}{(1-q^n)^k} = \sum_{n=0}^{\infty} p_{-k}(n)q^n.$$

Theorem (Gordon 1981)

If $24n \equiv k \pmod{11^r}$,

$$p_{-k}(n) \equiv 0 \pmod{11^{\frac{\alpha r}{2}+\epsilon}}$$

where $\epsilon = \epsilon(k) = O(\log |k|)$, if $k \ge 0, \alpha$ depends on the residue of k (mod 120) according to the following table.

	 • □ 	▶ ∢∄ ▶ ∢≣ ▶	<	D Q (P
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition		April 13, 2019	9 / 22

Shashika Petta Mestrige (Louisiana State University) Ramanujan congrue

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	2	1	2	1	1	1	2	2	1	1	2	2	1	2	1	0	0	1	1	0	0	1	1	0
24	1	1	1	1	2	2	1	1	2	2	1	0	0	0	0	1	1	0	0	1	1	1	0	0
48	1	1	2	2	1	1	1	0	1	0	1	0	0	1	1	0	0	1	0	1	0	1	0	0
72	2	1	1	1	2	1	2	1	2	1	2	2	1	1	1	2	1	2	1	2	1	1	1	0
96	0	0	1	0	1	0	1	0	1	1	0	0	0	1	0	1	0	1	0	1	1	0	0	0

Table: 1

Here the entry is $\alpha(24i + j)$ where row labelled 24i and column labeled j. When k < 0, the last column must be changed to 2, 2, 2, 0, 2.

•		< ₽ >	< ≣ >	< ≣ >	臣	~ ~ ~
ences for infinite family of partition	n			April 13, 1	2019	10 / 22

The U_p Operator

For a Laurent series $f(au) = \sum_{n \geq N} a(n)q^n$, we define the U_p operator by,

$$U_p(f(\tau)) = \sum_{pn \ge N} a(pn)q^n.$$

				A	10.0	-	11 / 00
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partitio	on			April	13, 2	2019	11 / 22

The U_p Operator

For a Laurent series $f(\tau) = \sum_{n \geq N} a(n)q^n$, we define the U_p operator by,

$$U_p(f(\tau)) = \sum_{pn \ge N} a(pn)q^n.$$

Let $g(\tau) = \sum_{n \ge N} b(n)q^n$ be an another Laurent series.

$$U_p(f(\tau)g(p\tau)) = g(\tau)U_p(f(\tau)).$$

590

11 / 22

< ≣ >

∃ →

April 13, 2019

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

The U_p Operator

For a Laurent series $f(\tau) = \sum_{n \geq N} a(n)q^n$, we define the U_p operator by,

$$U_p\left(f(au)
ight) = \sum_{pn\geq N} a(pn)q^n.$$

Let $g(\tau) = \sum_{n \ge N} b(n)q^n$ be an another Laurent series.

$$U_p(f(\tau)g(p\tau)) = g(\tau)U_p(f(\tau)).$$

Theorem (Atkin-Lehner)

If $f(\tau)$ is a modular function for $\Gamma_0(N)$, if $p^2|N$, then $U_p(f(\tau))$ is a modular function for $\Gamma_0(N/p)$.

臣

April 13, 2019

∃ ►

• • •

< ⊡

990

11 / 22

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

Let V be the vector space of modular functions on $\Gamma_0(11)$, which are holomorphic everywhere except possible at 0 and ∞ .

 Shashika Petta Mestrige (Louisiana State University)
 Ramanujan congruences for infinite family of partition
 April 13, 2019
 12 / 22

Let V be the vector space of modular functions on $\Gamma_0(11)$, which are holomorphic everywhere except possible at 0 and ∞ .

Atkin constructed a basis for V. Let $\{J_{\nu} | \nu \in \mathbb{Z}\}$ be the slightly modified basis elements by Gordon.

 Image: Shashika Petta Mestrige (Louisiana State University)
 Ramanujan congruences for infinite family of partition
 April 13, 2019
 12 / 22

Let V be the vector space of modular functions on $\Gamma_0(11)$, which are holomorphic everywhere except possible at 0 and ∞ .

Atkin constructed a basis for V. Let $\{J_{\nu}|\nu\in\mathbb{Z}\}$ be the slightly modified basis elements by Gordon.

Lemma (Gordon, 1981)

Shashika

For all
$$v \in \mathbb{Z}$$

a $J_{\nu}(\tau) = J_{\nu-5}(\tau)J_{5}(\tau)$,
a $\{J_{\nu}(\tau)| - \infty < \nu < \infty\}$ is a basis for V
a $Ord_{\infty}J_{\nu}(\tau) = \nu$
a $ord_{0}J_{\nu}(\tau) = \begin{cases} -\nu & \text{if } \nu \equiv 0 \pmod{5} \\ -\nu - 1 & \text{if } \nu \equiv 1, 2 \text{ or } 3 \pmod{5} \\ -\nu - 2 & \text{if } \nu \equiv 4 \pmod{5} \end{cases}$
b The Fourier series of $J_{\nu}(\tau)$ has integer coefficients, and is of the form $J_{\nu}(\tau) = q^{\nu} + \dots$
b State Petter Mestrige (Louisiana State University) Remanuform congruences for infinite family of partition $D_{\nu}(\tau) = Q^{\nu} + \dots$

(Louisiana State University) Ramanujan congruences for infinite family of partition

12 / 22

V is mapped to itself by the linear transfomation,

 $T_{\lambda}: f(\tau)
ightarrow U_{11}\left(\phi_{11}(\tau)^{\lambda}f(\tau)
ight)$

here λ is an integer and $\phi_{11}(\tau) = \frac{\eta(121\tau)}{\eta(\tau)}$.

			∢	► < Ξ)	• ∢ ≣ ▶	E.	うくで
Shashika Petta Mestrige	(Louisiana State University)	Ramanujan congruences for	infinite family of partition		April 13, 2	019	13 / 22

V is mapped to itself by the linear transfomation,

$$T_{\lambda}: f(\tau) \to U_{11}\left(\phi_{11}(\tau)^{\lambda}f(\tau)\right)$$

here λ is an integer and $\phi_{11}(\tau) = \frac{\eta(121\tau)}{\eta(\tau)}$.

Let $(C_{\mu,\nu}^{\lambda})$ be the matrix of the linear transformation T_{λ} with respect to the basis elements J_{ν} .

$$U_{11}\left(\phi(au)^{\lambda}J_{\mu}(au)
ight)=\sum_{
u}C_{\mu,
u}^{\lambda}J_{
u}(au)$$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 13 / 22

Sac

V is mapped to itself by the linear transfomation,

$$T_{\lambda}: f(\tau) \to U_{11}\left(\phi_{11}(\tau)^{\lambda}f(\tau)\right)$$

here λ is an integer and $\phi_{11}(\tau) = \frac{\eta(121\tau)}{\eta(\tau)}$.

Let $(C_{\mu,\nu}^{\lambda})$ be the matrix of the linear transformation T_{λ} with respect to the basis elements J_{ν} .

$$U_{11}\left(\phi(au)^{\lambda}J_{\mu}(au)
ight)=\sum_{
u}C_{\mu,
u}^{\lambda}J_{
u}(au)$$

Gordon obtained these recurrences for the matrix elements,

$$egin{aligned} \mathcal{C}_{\mu-5,
u+5}^{\lambda+12} &= \mathcal{C}_{\mu,
u}^{\lambda} \ \mathcal{C}_{\mu,
u}^{\lambda} &\equiv \mathcal{C}_{\mu,
u-5}^{\lambda-11} \pmod{11}. \end{aligned}$$

< □ ▶

- 4 🗗 ▶

April 13, 2019

13 / 22

hashika Petta Mestrige ((Louisiana State	University)	Ramanuian con	gruences for	infinite family o	of partition

Gordon proved an inequality about the 11-adic orders of the matrix elements.

$$\pi(C_{\mu, \mathbf{v}}^{\lambda}) \geq \left[rac{11\mathbf{v} - \mu - 5\lambda + \delta}{10}
ight]$$

 Image: Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition
 Image: April 13, 2019
 14 / 22

Gordon proved an inequality about the 11-adic orders of the matrix elements.

$$\pi(\textit{\textit{C}}_{\mu,\textit{\textit{v}}}^{\lambda}) \geq \left[rac{11\textit{\textit{v}}-\mu-5\lambda+\delta}{10}
ight]$$

here $\delta = \delta(\mu, \nu)$ depends on the residues of μ and $\nu \pmod{5}$ according to table 2.

			u		
μ	0	1	2	3	4
0	-1	8	7	6	15
1	0	9	8	2	11
2	1	10	4	3	12
3	2	6	5	4	13
4	3	7	6	5	9

Now by the Lemma , the Fourier series of $T_\lambda(J_\mu)$ has all coefficients divisible by 11 if and only if,

$$\mathcal{C}^{\lambda}_{\mu,
u}\equiv 0 \pmod{11}$$
 for all u

		-≡ ▶	< ₹ >	-	*) Q (*
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	۱		April 13,	2019	15 / 22

Now by the Lemma , the Fourier series of $\mathcal{T}_\lambda(J_\mu)$ has all coefficients divisible by 11 if and only if,

$$\mathcal{C}^{\lambda}_{\mu,
u}\equiv 0 \pmod{11}$$
 for all u

Now we define;

$$\theta(\lambda,\mu) = \begin{cases}
1 & \text{if all the coefficients of } U_{11}(\phi^{\lambda}J_{\mu}) \text{ divisible by } 11 \\
0 & \text{otherwise}
\end{cases}$$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition April 13, 2019 15 / 22

< ⊡ >

₹ ►

≣►

Ξ

Now by the Lemma , the Fourier series of $T_{\lambda}(J_{\mu})$ has all coefficients divisible by 11 if and only if,

$$C^{\lambda}_{\mu,
u}\equiv 0\pmod{11}$$
 for all u

Now we define;

 $heta(\lambda,\mu) = \begin{cases} 1 & ext{if all the coefficients of } U_{11}(\phi^{\lambda}J_{\mu}) \text{ divisible by } 11 \\ 0 & ext{otherwise} \end{cases}$

$$\theta(\lambda - 11, \mu) = \theta(\lambda + 12, \mu - 5) = \theta(\lambda, \mu)$$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 15 / 22

ъ

Now by the Lemma , the Fourier series of $T_{\lambda}(J_{\mu})$ has all coefficients divisible by 11 if and only if,

$$\mathcal{C}^{\lambda}_{\mu,
u}\equiv 0 \pmod{11}$$
 for all u

Now we define;

Shashika Petta Mestrige

 $\theta(\lambda,\mu) = \begin{cases} 1 & \text{if all the coefficients of } U_{11}(\phi^{\lambda}J_{\mu}) \text{ divisible by 11} \\ 0 & \text{otherwise} \end{cases}$

$$\theta(\lambda - 11, \mu) = \theta(\lambda + 12, \mu - 5) = \theta(\lambda, \mu)$$

		1										
							λ					
	μ	0	1	2	3	4	5	6	7	8	9	10
	0	0	1	0	1	0	1	0	1	1	0	0
	1	1	1	0	1	0	0	0	1	1	0	0
	2	1	1	1	0	0	0	0	1	1	0	0
	3	1	0	1	0	0	0	0	1	1	0	0
	4	1	0	1	0	1	0	1	1	0	0	0
						Tac	ne: 3)				
(Louisi	ana Stat	e Unive	rsity) Ra	manujar	1 congru	iences fo	or infinit	e family	of part	ition		

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{[1^c11^d]}(n)$.

 Image: Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition
 Image: April 13, 2019
 <t

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{[1^c11^d]}(n)$.

Let $L_0 = 1$

Shashika Petta Mestrige	(Louisiana State University)	Ramanujan congruences for	infinite family of partition	1	April 13, 2019	16 / 22

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{[1^c11^d]}(n)$.

Let
$$L_0 = 1$$

$$L_1(\tau) = U_{11}\left(\phi(\tau)^c \prod_{n=1}^{\infty} \frac{(1-q^{11n})^d}{(1-q^{11n})^d}\right)$$

 Image: Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition
 Image: April 13, 2019
 <t

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{[1^c11^d]}(n)$.

Let
$$L_0 = 1$$

$$L_{1}(\tau) = U_{11}\left(\phi(\tau)^{c}\prod_{n=1}^{\infty}\frac{(1-q^{11n})^{d}}{(1-q^{11n})^{d}}\right)$$
$$L_{1}(\tau) = U_{11}\left(q^{5c}\prod_{n=1}^{\infty}\frac{(1-q^{121n})^{c}(1-q^{11n})^{d}}{(1-q^{n})^{c}(1-q^{11n})^{d}}\right)$$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 16 / 22

크

Ξ.

∃→

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{[1^c11^d]}(n)$.

Let
$$L_0 = 1$$

$$L_{1}(\tau) = U_{11} \left(\phi(\tau)^{c} \prod_{n=1}^{\infty} \frac{(1-q^{11n})^{d}}{(1-q^{11n})^{d}} \right)$$
$$L_{1}(\tau) = U_{11} \left(q^{5c} \prod_{n=1}^{\infty} \frac{(1-q^{121n})^{c}(1-q^{11n})^{d}}{(1-q^{n})^{c}(1-q^{11n})^{d}} \right)$$
$$L_{1}(\tau) = \prod_{n=1}^{\infty} (1-q^{11n})^{c} (1-q^{n})^{d} \sum_{m \ge \mu_{1}}^{\infty} p_{[1^{c}11^{d}]} (11m+n_{1})q^{m}$$

	▶ ▲ 臣 ▶	Ð.	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	April 13, 20	019	16 / 22

Shashika Petta Mestri

Our first goal is to construct sequence of modular functions that are the generating functions for the partitions $p_{[1^c11^d]}(n)$.

Let
$$L_0 = 1$$

$$\mathcal{L}_{1}(\tau) = \mathcal{U}_{11} \left(\phi(\tau)^{c} \prod_{n=1}^{\infty} \frac{(1-q^{11n})^{d}}{(1-q^{11n})^{d}} \right)$$

$$\mathcal{L}_{1}(\tau) = \mathcal{U}_{11} \left(q^{5c} \prod_{n=1}^{\infty} \frac{(1-q^{121n})^{c}(1-q^{11n})^{d}}{(1-q^{n})^{c}(1-q^{11n})^{d}} \right)$$

$$\mathcal{L}_{1}(\tau) = \prod_{n=1}^{\infty} (1-q^{11n})^{c}(1-q^{n})^{d} \sum_{m \ge \mu_{1}}^{\infty} p_{[1^{c}11^{d}]}(11m+n_{1})q^{m}$$

$$\mathcal{L}_{2}(\tau) = \prod_{n=1}^{\infty} (1-q^{11n})^{d}(1-q^{n})^{c} \sum_{m \ge \mu_{2}}^{\infty} p_{[1^{c}11^{d}]}(11^{2}m+n_{2})q^{m}$$

$$\mathcal{L}_{2}(\tau) = \mathcal{L}_{2}(\tau) = \mathcal{L}_{2$$

Define
$$L_r := U_{11}(\phi^{\lambda_{r-1}}(\tau)L_{r-1})$$

				-	
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition			April 13, 3	2019	17 / 22

$$\mathsf{Define}\quad \mathsf{L}_{\mathsf{r}}:=\mathit{U}_{11}(\phi^{\lambda_{\mathsf{r}-1}}(au)\mathsf{L}_{\mathsf{r}-1})$$

here
$$\lambda_r = \begin{cases} c & \text{if } r \text{ is even} \\ d & \text{if } r \text{ is odd} \end{cases}$$

	> < Ξ >	≣ ≁) Ϙ (≯
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	April 13, 201	.9 17 / 22

Define
$$L_r := U_{11}(\phi^{\lambda_{r-1}}(\tau)L_{r-1})$$

here $\lambda_r = \begin{cases} c & \text{if } r \text{ is even} \\ d & \text{if } r \text{ is odd} \end{cases}$
 $L_{2r}(\tau) = \prod_{n=1}^{\infty} (1-q^n)^c (1-q^{11n})^d \sum_{m \ge \mu_{2r}} p_{[1^c 11^d]}(11^{2r}m+n_{2r})q^m$
 $L_{2r-1}(\tau) = \prod_{n=1}^{\infty} (1-q^{11n})^c (1-q^n)^d \sum_{m \ge \mu_{2r-1}} p_{[1^c 11^d]}(11^{2r-1}m+n_{2r-1})q^m$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 17 / 22

うくで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define
$$L_r := U_{11}(\phi^{\lambda_{r-1}}(\tau)L_{r-1})$$

here $\lambda_r = \begin{cases} c & \text{if } r \text{ is even} \\ d & \text{if } r \text{ is odd} \end{cases}$
 $L_{2r}(\tau) = \prod_{n=1}^{\infty} (1-q^n)^c (1-q^{11n})^d \sum_{m \ge \mu_{2r}} p_{[1^c 11^d]}(11^{2r}m+n_{2r})q^m$
 $L_{2r-1}(\tau) = \prod_{n=1}^{\infty} (1-q^{11n})^c (1-q^n)^d \sum_{m \ge \mu_{2r-1}} p_{[1^c 11^d]}(11^{2r-1}m+n_{2r-1})q^m$

Now we define,

$$A_r(c,d) = \sum_{i=0}^{r-1} heta(\lambda_i,\mu_i)$$

for any positive integer r and integers c, d. We also put $A_0 = 0$.

		< 1	< ₽ >	∢ ≣ ⊁	∢ ≣ ∢	E	~) Q (~
Shashika Petta Mestrige	(Louisiana State University)	Ramanujan congruences for infinite family of partition			April 13	, 2019	17 / 22

Define
$$L_r := U_{11}(\phi^{\lambda_{r-1}}(\tau)L_{r-1})$$

here $\lambda_r = \begin{cases} c & \text{if } r \text{ is even} \\ d & \text{if } r \text{ is odd} \end{cases}$
 $L_{2r}(\tau) = \prod_{n=1}^{\infty} (1-q^n)^c (1-q^{11n})^d \sum_{m \ge \mu_{2r}} p_{[1^c 11^d]}(11^{2r}m+n_{2r})q^m$
 $L_{2r-1}(\tau) = \prod_{n=1}^{\infty} (1-q^{11n})^c (1-q^n)^d \sum_{m \ge \mu_{2r-1}} p_{[1^c 11^d]}(11^{2r-1}m+n_{2r-1})q^m$

Now we define,

$$A_r(c,d) = \sum_{i=0}^{r-1} heta(\lambda_i,\mu_i)$$

for any positive integer r and integers c, d. We also put $A_0 = 0$.

We can prove $\pi(L_r) \ge A_r$.

				=	*) 4 (*	
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partitio	n		April 13	3. 2019	17 / 22	

By the recurrence relation between L_{2r} and L_{2r-1} ,

$$n_{2r} = -5d \cdot 11^{2r-1} + n_{2r-1}$$
$$n_{2r-1} = -5c \cdot 11^{2r-2} + n_{2r-2}$$

			4) Q (¥
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	ŀ	April 13, 2019	18 / 22

By the recurrence relation between L_{2r} and L_{2r-1} ,

$$n_{2r} = -5d \cdot 11^{2r-1} + n_{2r-1}$$
$$n_{2r-1} = -5c \cdot 11^{2r-2} + n_{2r-2}$$

since $n_0 = 0$ we have that,

$$n_{2r-1} = -c \left(\frac{11^{2r} - 1}{24}\right) - 11d \left(\frac{11^{2r-2} - 1}{24}\right),$$
$$n_{2r} = -c \left(\frac{11^{2r} - 1}{24}\right) - 11d \left(\frac{11^{2r} - 1}{24}\right).$$

< 🗗 ▶

< ≣ ►

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

æ April 13, 2019 18 / 22

≣≯ •

By the recurrence relation between L_{2r} and L_{2r-1} ,

$$n_{2r} = -5d \cdot 11^{2r-1} + n_{2r-1}$$
$$n_{2r-1} = -5c \cdot 11^{2r-2} + n_{2r-2}$$

since $n_0 = 0$ we have that,

$$n_{2r-1} = -c \left(\frac{11^{2r} - 1}{24}\right) - 11d \left(\frac{11^{2r-2} - 1}{24}\right),$$
$$n_{2r} = -c \left(\frac{11^{2r} - 1}{24}\right) - 11d \left(\frac{11^{2r} - 1}{24}\right).$$

From this we have that,

 $24n_{2r-1} \equiv (c+11d) \mod 11^{2r-1}$ and $24n_{2r} \equiv (c+11d) \mod 11^{2r}$

Therefore n_r are integers such that,

$$24n_r \equiv (c+11d) \pmod{11^r}.$$
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition
$$April 13, 2019 \qquad 18 / 22$$

Now let's find μ_r explicitly. Notice that μ_r is the least positive integer m s.t. $11^r m + n_r \ge 0$.

) ~ (
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition	April 13, 2019	19 / 22

Now let's find μ_r explicitly. Notice that μ_r is the least positive integer m s.t. $11^r m + n_r \ge 0$.

Since
$$11^{2r-1}m + n_{2r-1} \ge 0$$
, $\mu_{2r-1} = \left\lceil \frac{11c+d}{24} - \frac{c+11d}{24 \cdot 11^{2r-1}} \right\rceil$.

Also
$$11^{2r}m + n_{2r} \ge 0$$
, $\mu_{2r} = \left\lceil \frac{c + 11d}{24} - \frac{c + 11d}{24 \cdot 11^{2r}} \right\rceil$.

 Image: Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition
 Image: April 13, 2019
 19 / 22

Now let's find μ_r explicitly. Notice that μ_r is the least positive integer m s.t. $11^r m + n_r \ge 0$.

Since
$$11^{2r-1}m + n_{2r-1} \ge 0$$
, $\mu_{2r-1} = \left\lceil \frac{11c+d}{24} - \frac{c+11d}{24.11^{2r-1}} \right\rceil$.

Also
$$11^{2r}m + n_{2r} \ge 0$$
, $\mu_{2r} = \left\lceil \frac{c + 11d}{24} - \frac{c + 11d}{24 \cdot 11^{2r}} \right\rceil$.

Example (c = 1, d = -11)

In this case, λ_i is 1 if *i* even or is -11 if *i* is odd. We also have $n_r = 11^r - 5$ and $A_r = r$.

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinit

$$p_{[1^111^{-11}]}(11^rm+11^r-5)\equiv 0 \pmod{11^r}$$

< □	▶ ◄ @	• •	₹ ×	< ≣ >	1	50	$\langle \mathcal{O} \rangle$
e family of partition				April 13, 2	019	19 /	22

Now let's find μ_r explicitly. Notice that μ_r is the least positive integer m s.t. $11^r m + n_r \ge 0$.

Since
$$11^{2r-1}m + n_{2r-1} \ge 0$$
, $\mu_{2r-1} = \left\lceil \frac{11c+d}{24} - \frac{c+11d}{24.11^{2r-1}} \right\rceil$.

Also
$$11^{2r}m + n_{2r} \ge 0$$
, $\mu_{2r} = \left\lceil \frac{c + 11d}{24} - \frac{c + 11d}{24 \cdot 11^{2r}} \right\rceil$.

Example (c = 1, d = -11)

In this case, λ_i is 1 if *i* even or is -11 if *i* is odd. We also have $n_r = 11^r - 5$ and $A_r = r$.

$$p_{[1^111^{-11}]}(11^rm+11^r-5)\equiv 0 \pmod{11^r}$$

Example
$$(c = 2, d = 7)$$

 $p_{[1^211^7]}\left(11^{2r}m - \frac{7 \cdot 11^{2r} - 79}{24}\right) \equiv 0 \pmod{11^{2r-1}}.$
Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition April 13, 2019 19 / 22

Congruences for $\ell = 5$

In this case we define $\theta(b) = \left\{ egin{array}{cc} 1 & ext{if } b \equiv 1 ext{ or } 2 \pmod{5}, \\ 0 & ext{Otherwise.} \end{array}
ight.$

We also define, for $r \geq 1$,

$$A_{2r-1} = \theta(c) + \sum_{i=1}^{r-1} \{\theta(6k_i + 6 + d) + \theta(6l_i + 6 + c)\}, \quad A_{2r} = A_{2r-1} + \theta(6k_i + 6 + d),$$

where $k_1 = [(c-1)/5], l_i = [(d+k_i)/5]$ and $k_{i+1} = [(c+l_i)/5].$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 20 / 22

=

Congruences for $\ell = 5$

In this case we define $\theta(b) = \left\{ egin{array}{cc} 1 & ext{if } b \equiv 1 ext{ or } 2 \pmod{5}, \\ 0 & ext{Otherwise.} \end{array}
ight.$

We also define, for $r \geq 1$,

$$\begin{aligned} A_{2r-1} &= \theta(c) + \sum_{i=1}^{r-1} \{\theta(6k_i + 6 + d) + \theta(6l_i + 6 + c)\}, \quad A_{2r} = A_{2r-1} + \theta(6k_i + 6 + d), \\ &\text{where} \quad k_1 = [(c-1)/5], l_i = [(d+k_i)/5] \quad \text{and} \quad k_{i+1} = [(c+l_i)/5]. \\ &n_{2r} = -(c+5d) \left(\frac{5^{2r}-1}{24}\right), \qquad n_{2r-1} = -c \left(\frac{5^{2r}-1}{24}\right) - 5d \left(\frac{5^{2r-2}-1}{24}\right). \end{aligned}$$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 20 / 22

=

Congruences for $\ell = 5$

In this case we define $\theta(b) = \left\{ egin{array}{cc} 1 & ext{if } b \equiv 1 ext{ or } 2 \pmod{5}, \\ 0 & ext{Otherwise.} \end{array}
ight.$

We also define, for $r \geq 1$,

$$A_{2r-1} = \theta(c) + \sum_{i=1}^{r-1} \{\theta(6k_i + 6 + d) + \theta(6l_i + 6 + c)\}, \quad A_{2r} = A_{2r-1} + \theta(6k_i + 6 + d),$$

where $k_1 = [(c-1)/5], l_i = [(d+k_i)/5]$ and $k_{i+1} = [(c+l_i)/5].$
 $n_{2r} = -(c+5d)\left(\frac{5^{2r}-1}{24}\right), \quad n_{2r-1} = -c\left(\frac{5^{2r}-1}{24}\right) - 5d\left(\frac{5^{2r-2}-1}{24}\right).$
Example
For 5-regular partitions $b_5\left(5^{2r}m + \frac{5^{2r}-1}{6}\right) \equiv 0 \pmod{5^r}$
For 5-core partitions $a_5(5^rm - 1) \equiv 0 \pmod{5^r}$

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

April 13, 2019 20 / 22

Questions/Future Work

There are two ways to prove the congruences for $p_{[1^c \ell^d]}(n)$ for the other primes,

- Construct bases for modular functions on $\Gamma_0(\ell)$ and use the Gordon's method to prove the congruences.
- Use modular forms modulo ℓ theory.

Theorem (Folsom, Kent, Ono, 2012)

Shash

Let
$$L_0 := 1$$
 and $L_r := U_\ell \left(\phi_\ell^{\lambda_{r-1}}(\tau) L_{r-1} \right)$
here $\phi_\ell(\tau) := \frac{\eta(\ell^2 \tau)}{\eta(\tau)}$ and $\lambda_r = \begin{cases} 1 & \text{if } r \text{ is even }, \\ 0 & \text{if } r \text{ is odd.} \end{cases}$

If $m \ge 1$, $5 \le \ell \le 31$ and $r \ge m^2$, then L_r belongs to a $\mathbb{Z}/\ell^m\mathbb{Z}$ -module with rank $\le \lfloor \frac{\ell-1}{12} \rfloor$.

ika Petta Mestrige. (Louisiana State University) Ramanuian congruences for infinite family of partition	1			April 13	2019	21	
4 L			= •	₹ ₹ ₹	-	ل رس	1

THANK YOU!

Shashika Petta Mestrige (Louisiana State University) Ramanujan congruences for infinite family of partition

€ April 13, 2019

▲□▶ ▲ 国▶ ▲ 国▶

< □ ▶

596 22 / 22